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Mitochondria possess their own genetic material
{mitochondrial DNA or mtDNA), whose gene products
are involved in mitochondrial respiration and oxidative
phosphorylation, transcription, and translation. In ani-
mals, mitochondrial DNA is typically transmitted to off-
spring by the mother alone. The discovery of ‘doubly
uniparental inheritance’ (DU} of mtDNA in some bivalves
haschallengedthe paradigm of strictmaternatinheritance
{SMIL In this review, we survey recent advances in our
understanding of DUI, which is a peculiar system of cyto-
plasmic DNA inheritance that involves distinct maternal
and paternal routes of mtDNA transmission, a novel ext-
ension of a mitochondrial gene (cox2), recombination, and
periodic ‘role-reversals’ of the normally male and female-
transmitted mitochondrial genomes. DUl provides a
unique opportunity for studying nuclear-cytoplasmic gen-
ome interactions and the evolutionary significance of
different modes of mitochondrial inheritance.

Mitochondrial inheritance: rules for mussels
Mitochondria are mubtifunctional, DNA-bearing organelles
found in eukarvotic cells. Animal mitochondrial DNA
(mtDNA) is typically a eircular molecule ~16.5-kilobase
long {butlinear and longer mtDNAs exist across eukaryotes,
see Ref. [1]) that normally encodes ~37 genes {2}. Among
them, 24 mitochondrial genes encode components involved
in the mitochondrial translational machinery (22 tRNAs
and two rRNAs). The remaining 13 genes encode protein
subunits of the respiratory chain complexes and ATP
synthase (see Glossary).

In animal species, mtDNA is exclusively maternally
inherited {31 (but see Refs [4,5] for exceptions). Apart from
rare mutants, all copies of mtDNA in each cell typicaliy have
identical DNA sequences, a situation known as homo-
plasmy. Disruption of mitochondrial homoplasmy (.e. the
mixing of different mtDNAs within a cell or heteroplasmy)
results in genetic variance within an organism. The result-
ing potential for inter-mitochondrial competition could set
the stage for the spread of deleterious, selfish mitochondrial
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elements [6,7], Uniparental inheritance of mtDNA in
amimals is a mechanism that hag apparently evolved to
avoid such intracellular conflict [7-9]. However, an extreme
deviation from this general rule, termed doubly uniparental
inheritance{DUI) [10}, occurs in marine mussels of the order
Mytiloida, freshwater mussels of the superfamily Unioen-
oidea, and marine clams of the order Veneroida [10-21].
Species possessing DUI are characterized by the presence of
distinct gender-associated miDNAs that are inherited
either maternally or paternally. These female-transmitted

Glossary

Gonochoric: describes & sexually reproducing species in which there are two
{at least) distinct sexes.

Heteroplasmy: the existence of two (or more) piastid variants imitochondrial or
chioroplast DNA} within an organelie, cell, tissue or individual.
Homoplasmy: the condition in which all plastid geromes {i.e. usually referring
to genetic Identity of mitochondria or chloroplasts} in an organetis, cell, tissue
or individual are dentical,

Hybrid zone: an area where two species come into contact and offspring are
produced that are the result of interbreeding between the different specles.
Masculinization; 2 female-transmitted mtDNA can become 'masculinized’ li.e.
revarse its role and become transmitted paternaliyl.

Nuclear isoforms: different forms of a nuclear-encodad protein that might be
praduced from different genes or from the same gene by alternative splicing
{i.e. different versions of messenger RNA) of posttrensiational modifications,
Isoforms are usually tissue-specific.

Qvotestis: refers to a gonad that contains both ovarian and testicuiar tissues
{i.e. hermaphroditism}.

Oxidative phosphorylation {OXPHOS): the synthesis of ATP {i.e. the high
gnergy source used for essentially all active metabolic processes within the
ceill by phosphorylation of ADP for which energy is obtained by slectron
transport and which takes place in the mitochondria during aerobic respiration.
Respiratory chain complexes and ATP synthase: an elaborate system
composed of five enzyme complexes situated on the inner mitochondrial
membrane, The four first compiaxes act as an electron transport chain from
reduced cofactors {e.g. the reduced form of nicotinamide adenine dinucleotide
{NADH] or flavin adenine dinucleotide [FADH;]} to molecular oxygen. The
passage of electrons Ts linked to proton efflux across the mitochondrial inner
membrane to establish & source of powsr for ATP synthase {complex V) to
synthesize ATP, The mtDNA encodes seven subunits of the NADH: ubiquinone
oxidoreductase {complex I; NOT to NDS, and ND4L}, one subunit of the
ubiquinone: eytochrome ¢ oxidoreductase {complex [l Cyt b), three subunits
of the cytochrome ¢ oxidase (complex [V; COXT 1o COX3) and two subunits of
the ATP synthage {complex V; ATP6 and ATPS. Cther subunits of complexes |,
Hi, IV, and V, as well as afl the components of compiex [l {succinate: ubiquinone
oxidoreductase), the membrane transporters, the enzymes of the mavix, and
the factors invoived in other mitcchondrial functions, e.g. miDNA replication
and rtDNA expression, are nuciear-encoded in animals,

Selish mitochondrial elements: Potentially delaterious elements that enhance
their own transmission refative to their allelic counterparts.
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and male-transmitied mitochondrial genomes (referred to
for convenience as ‘F genomes’ and ‘M genomes’, respect-
ively) often exhibit nucleotide divergences greater than 20%.
Female mussels typically inherit their F genome only from
their mother, but they trangmit this F genome to both sons
and daughters. Male zygotes inherit their mtDNA from both
parents, but they sort the mixture of mitochondrial genomes
present such that the M genome inherifed from their father
becomes established in the germ line. This paternal M
genoime will subsequently be passed on by way of the sperm
where it will ultimately be retained only by sons, possibly as
a consequence of Hmited replication of the M genome in
females [22,23]. Females are essentially hemoplasmic for
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mtDNA [33]. Empirical évidences for such mechanisms
came from studies on Mytilus embryos. Typically, the fate
of sperm mitochondria depends on whether the embryo is
destined to develop into a female or a male [34-38}. For
example, Sutherland et a!. [35] found that during fertiliza-
tion, all eggs receive sperm mitochondria, which are elimi-
nated or drastically reduced within 24-48 hrs in female
embryos. Recent epifluorescence-based observations of
embryos destined to become males demonsirated that
sperm mitochondria tend to aggregate in a single blasto-
mere that is thought to give rise to the male germ line. By
contrast, in embryos destined to become female, sperm
mitochondria are randomly dispersed among blastomeres

the F genome whereas males are heteroplasmic for hoth T
and M genomes. This peculiar situation chailenges our
traditional view of the strict maternal inheritance (SMI)
of mtDNA. A striking difference between SMI and DUT
systems is that the latter allows selection to act directly
on the male mitochondrial genome; unlike most animals,
male mussels do not represent an evolutionary dead-end for
mitochondrial genomes [24,25].

Although the essential structure of the DUI system is
known, we are still revising and refining our understand-
ing of the evolutionary implications of DUIL, Major ques-
tions about DUI into which we are just now gaining insight
include whether DUT originated to avoid the deleterious
effects of mitochondrial DNA mutations on sperm function
or whether the phenomenon evolved because of arole in sex
determination of selfish mitochondrial DNA elements. In
addition te surveying recent studies of DUI, we discuss the
latest ideas regarding the evolutionary origin of this aty-
pical system of mtDNA inheritance and we highlight some
fascinating questions that are beginning to emerge from
studies of DUL

The DUI system unveifed

DUT was discovered in 1990 when a high frequency of
heteroplasmic individuals was detected in a study of
mtDNA variation in a hybrid zone between Mytilus edulis
and M. galloprovincialis mussels in southwest England
[26]. The occurrence of two divergent mtDNAs in the same
individuals was subsequently confirmed in other mytilid
populations [27,28]. These findings, combined with
previous cytological studies showing retention of paternal
mitochondria in early embryos [29], led the authors to
suggest biparental transmission of Myv#ilus mitochondrial
DNA 27,28]. Subsequent studies showed that hetero-
plasmy in Mytilus was associated to a gender-associated
mtDNA  transmission system that required distinct
paternal and maternal mitotypes [10,13]. For this reason,
it was named doubly uniparental inheritance [10]. DUI
was later documented in other (bui not all} bivalve taxa
as noted above {Figure 1). Given the broad faxonomic
distribution of DUI observed within the Bivalvia [15-
17,20,21,30--32] it was proposed that this system evolved
once in an ancestral bivalve lineage and was subsequently
lost in some descendants {19,33].

The transition from strict maternal inheritance (SMI) to
DUI probably involved a medification of the recognition
system of sperm mitochondria by eges, and a specific
mechanism ensuring a father-to-son transmission of M
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(36,371 This sex-specific difference in the embryonic agere-
gation of M versus I genomes, which is one factor respon-
sible for the tissue specific differences in ratios of M and ¥
genomes, appears to be dependent on the action of micro-
tubules [39,40].

These studies suggest that heteroplasmy is the initial
state in the early development of mytilid embryos. In the
family Mytilidae, females normally shift from being het-
eroplasmic zygotes to esseniially homoplasmice (F genome
containing} adults. Mature male mytilids contain varying
ratios of the F and M genomes in all tissues (i.e. testes
confain predominantly M genome, somatic tissues contain
predominantly F genome) [41,42]. By contrast, the venerid
clam Venerupis (=Ruditapes) philippinarum has a strong
predominance of M mtDNAs in somatic tissues [16]. Taken
together, these results indicate that mechanisms for the
sequestration of sperm mitochondria and the M genome
into the male gonad are not perfect [33], or that M genomes
have distinct functional repertoires in these two divergent
marine taxa. Similarly, the mechanisms that Limit the
presence of sperm mitochondria and M genomes in devel-
oping females are also not perfect. Frace amounts of M
genome have been found in tissues of adult females [41,42]
and even in the unfertilized eggs of M. galloprovincialis
[22]. By contrast, the male germ line seems to normally
exclude the mitochondrial F mitochondrial genome and
preferentially amplify the M gencme [38). Indeed, by for-
cing spawned sperm to swim through a solution of Percoll,
and thus minimizing the probability of sperm contami-
nation by somatic tissues or cells, Venetis ef af. {38! recov-
ered only distinet, paternally transmitted mtDNA
genomes in the total DNA extractions from the ‘washed’
sperm of 36 M. galloprovincialis individuals, This precise
male-specific transmission of the M mitochondrial genome
is required for the stability of DUI [38].

Another unusual aspect of mussel genetics (and to date
this has only been demonstrated in Mytilus) is that some
females produce female-biased offspring whereas other
females produce male-biased offspring, regardless of
which male they mate with [34]. A model to explain the
coupling of mtDINA inheritance and sex determination in
mussels has been previously developed [33,34,37,43] (Box
1). According to this model, mtDNA inheritance in
bivalves with DUI could be controlled by a maternally-
encoded sex-determining gene or a gene linked to a
sex-determining factor, as has been observed in the basi-
diomycete fungus Cryptocoecus neoformans [4]. It is
tempting to speculate that the sperm mitochondria might
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Figure 1. BUI phylogeny, The mitochondrial genome evelutionary relationships for the DUl-containing taxa showing that the male {M) and female (F) genomes in the

frashwater mussels, the Unionidag, have been stable whereas there is evidence for oocasional maseulinization events lie. F genomes giving rise to M genomes; in the
families Veneridae and Mytilidae. Topology and branch lengths are based on analysis of 199 amino acids from cox1 and posterior probabilities {x 100} >93¢ are displayed.
The taxonomic and sex-specific transmission affiliations of the individual sequences are indicated at the right. The Mr. Bayes analysis {731 used the Jones, Taylor and
Thornton {JTT) model of amino acid substitution [74] and was run for 10 million generations with eight chains. Overall, 10 000 trees were saved during the courss of the
analysis but only the last 9000 were used to construct the consensus tree {L.e. the first 1000 trees were discarded as burn-in), The original nuciectide sequences [species and

accessions numbars} ware franslated with the Drosophila mitochondrial genetic o

Box 1. DUI model

ode and used according to Refs [19,47,48,75-78].

The maodel, based on sex-ratio bias of certain pair matings, proposes
that the bias is under the control of the female parent and suggests that
this control is exercised by the nuclear genotype of the mother rather
than mitochondrial genotype {43). i has been hypothesized that three
genetic factors {i.e. W, X, and Z} are involved, According to this model,
W is focated in the outer surface of the sperm mitochondrion and is
recognized by an egg nuclear-encoded cytoplasmic X factor. These two
factors are suggested 1o be parts of the ‘sperm mitcchondria
elimination system’ that leads to ‘'maternal miDNA inheritance, a
mechanism that could be comparable to the ubiguitination system
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observed in mammais {43]. In addition to W and X, the modei also
implies a DUl-specific, one-locus two-allele, Z factor (i.e. the astive Z
and the inactive z), which occurs in the egg cyteplasm. The role of the
factor Z is to suppress factor X, and thus prevent the elimination {or
dispersion} of sperm mitochondria in fertiiized eggs (Figure i} If only
sperm mitochondria subsequently gain entrance into the primerdial
germ cell, or if the M genome has a replicative advantage over the F
genomae inthese cells, it might explain the dominance of the M genome
in the male gonad {37]. The Z factar, paternal mitochondria and the M
genome herein are virtually linked to sex determination.
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Figure L. Proposed genetic control of mitochondrial transmission under the DU system. {a} Male and female gametes contribute to the mitochondrial peputation of the
fertilized ogg (b} Mother-dependant genetic models [33,34,37,43] predict that mothers carrying the Z allete will produce eggs with the Z factor, atlowing the retention of
sperm mitockondria and their subsequent aggregation in a single blastomere in embryos destined to become males. By contrast, zz mothers will produce eggs without
the Z factor in which sperm mitochondria will be dispersed and/or fost, and embryos will become famales.

be involved in differentiation of male reproductive tissue
once they have been sequestered in the germ line. This
hypothesis would imply functional differences between
the mitochondrial M and F genomes and/or specific
nucleo-mitochondrial interactions in the male gonad,
although to our knowledge such interactions have not
vet been demonstrated.
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Molecular evolution of M and F mitochondrial
genomes

Genetic analyses using partial mtDNA sequences of M and
I mitotypes in species with DUI [14-18,20,30,31] indicated
that (i DUI appeared 200 million years ago, if not before;
(ii) mussel mtDNA (both M and F lineages) has experi-
enced an accelerated rate of mtDNA sequence divergence



compared with that of other animal taxa; and (iil) the M
genome evolves more quickly than the F genome. A leading
interpretation explaining why M evolves faster than F, and
why both of them evolve faster than typical mtDNA, is the
relaxation of selective constraints due to the unequal
‘division of lahour’ in the DUI system [32,33]. Indeed,
contrary to typical mtDNA, which has to perform fully
in gonad and soma of both sexes, the F genome functions in
female gonad and soma of both sexes, whereas the male
genome serves primarily in the male gonad and enly
partially in male soma, where it occurs sporadicaily in
conjunction with the more abundant F type [32,41,42].

....Lhe availability of 11 complete or nearly complete Fand

M mtDNA genome sequences has shown how species with
DU vary from the typical pattern of animal mtDNA gene
content (Table 1). Most species with DUI {except Lampsilis
{a unionoidean hivalve)] have lost the gene for ATPase
subumit 8 (efp8) and some have a second tRNA gene for
methionine (¢trnM) (e.g. Mytilus spp. and female Veneru-
pis). However, other bivalve species, such as the sea scal-
lop, Plocopecten magellanicus, also lack atp& and have
multiple trnM genes [44].

The mtDNA control region (i.e the region of the
mitachondrial genome in which rveplication and transcrip-
tion are initiated) has been identified in mytilid hivalves
{45}, but, to our knowledge, no control region has been
confirmed yet in veneroid or unionsidean bivalves (see
Ref. [46]). With few exceptions, gene order and content of
F and M genomes from the same species are well preserved.
The freshwater mussel Inversidens japanensis has two gene-
order inversiong (in both the light and the heavy sirands)
and two tRNAs (7D and trn V) encoded by opposite strands
that are responsible for differences between F and M
miDNAs [47] (M. Okazaki and R. Ueshima, unpublished}.
The F genome of the marine clam Venerupis philippinarum
contains a duplication of the gene for cytochrome ¢ oxidase
subunit I (cox2) and the M genome contains an extra fralf
gene, distinguishing the two mtDNAs [47F {M. Okazaki and
R. Ueshima, unpublished}.

Table 1. Complete mitochondrial genomes of species with DU!
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A recent comparative analysis of several mitochondrial
genomes from three Mytilus species showed that the amino
acid variability within mtDNA regions of the M genome
was highly correlated with variability within the F
genome (i.e. regions with high or low amino acid differences
were similar in both lineages). This was interpreted as
evidence of cyto-nuclear co-evolution (Box 2). The necessity
of evolving in the same nuclear background has apparently
forced the F and M mtDNA genomes to experience similar
selective pressures. Thesge selective pressures could result
in the retention of a particular amino acid from the ances-
tral mtDNA genome at positions of structural importance
to enzyme function, convergent amino acid changes at
other sites, or even functionally equivalent (but different)
amino acid substitutions in the M and F lineages. The key
observation from this study is that the regions of varia-
bility in the distinct gender-associated miDNA lineages
are highly correlated [48].

When DUI breaks down: masculinization of F mtDNA
Phylogenetic analyses of cytochrome ¢ oxidase subunit [
{cox1) sequences have demonstrated that in marine (but
not freshwater) mussels, the fidelity of DUT is sometimes
compromised. Some males seem tolack a typical M genome
[33,49-51], and F genomes seem to occasionally invade the
male route of inheritance such that they become trans-
mitted from generation to generation only through sperm
[33,34,38,49]. However, the reverse (ie. an M genocme
invading the F genome route of transmission) hag not been
observed. This phenomenon has been referred to as a
‘masculinization’ or ‘role-reversal’ event. The F' genomes
that have invaded the M genome’s route of transmission
are referred to as ‘recently-masculinized’ M types [33,49-
51]. Several populations of Mytilus mussels are poly-
morphic for two classes of M mitochondrial genomes: an
older, ‘standard’ M type and a ‘recently-masculinized’ M
type. The genomes of the latier, particularly their protein
coding regions, are highly similar to F genomes but they
are transmitted as M genomes through sperm.

Species Gender Order Genome size Gene number GenBank Refs
{bp} {proteins—tRNAs—  accession number
TRNAS)
Marine mussels
Mytilus edulis Fermale Mytiloida 16 740 12-23-2 AYA4B4147 {75,90]
M. galioprovincialis Female Mytiloida 16 744 12-23-2 AY497292 471
M. edulis Male haplotype 1 Mytilcida 16 822 12-23-2 AY823623 [48]
M. edulis Male haplotype 2 Mytileida 16 624 12-23-2 AYB23624 {48]
M. galloprovincialis Male Mytiloida 17 671 12-23-2 AY363687 i47]
M. trossulus Masculinized Mytiloida 18 652 12~ 23 -2 AYB23625 [48]
Marine clam
Venerupis Fernale Veneroida 22 676 13- 2327 AB0G5375 M. Okazaki and R.
philippinarum Ueshima, unpublished
V. philippinarum Mate Veneroida 21 441 12-24-2 ABG6B374 M. Okazaki and R.
Ueshima, unpublished
Freshwater mussels
Lampsilis ornata Female Unionoida 16 060 13 -22 -2¢ AY365193 {461
Inversidens Female Unionoida 16 826 12-22~-2 ABDO55625 M. Okazaki and R.
japanensis Ueshima, unpublished
I. japanensis Male Unionoida 16 957° 12-22-2 ABO55624 M. Ckazaki and R,
Ueshima, unpublished

“Incomplete mitochondrial sequences.
"Cox2 is duplicated.
“Contains atp8.
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Box 2. DUI and the study of intergenomic interactions

TRENDS in Genetics Vol,23 No.9

Strong evidence for intergenomic co-evolution has been provided by
direct manipufation of celts and/or embryos in culture or faborastory
crosses where OXPHOS functional assays can be linked to amino acid
substitutions in the interacting profeins encoded by mitochondrial and
nuclear genes (see Refs [80] and [81] for reviews). Levels of intra-
species mtDNA sequence divergences between M and F genomes in
marine and freshwater male mussels are the highest intra-individual
vaiues yet reported (with sequence divergences In cox? often >20%
and >30%, respectively), even higher than intra- or inter-species values
reported in classical mode! systems used for the study of intergenomic
co-gvolution {Figure |) (see Ref. [82]), From a co-evolutionary perspec-
tive, one challenging question is: 'De nuclear-encoded peptides
function equaily-well with either the M or F miDNAY. For example,

thera is the possibility that in somatic tissue of either sex the M genome.

is present but not serving any useful function. Ancther hypothesis is
that the M genome might do its job even under a clumsy coliaboration
with the nuclear genes. A third assumption is the existence of nuclear

isoforms that are only expressed and interact with either the M or F
m{DNA genome. These isoforms might exhibit differences in bicchem-
ical activity that could have evolved to avoid potential within-individual
intergenomic conflict. indeed, testis-specific iscforms {e.g. nuclear-
encoded mitochondrial cytochrome ¢ and COX subunit Vib [complex
V]} have been discovered in mammals, suggesting a possible
accommodation for the high energy demand of sperm motility [83].

Because of the important differences in the mutation rates of male
and female miDNAs, it has been hypothesized that maje mtDNA
should be either under relaxed constraints or positive selsction
pressures. in both cases, these differences can offer exceptional
material to reveal, by comparative approaches (l.e. male and female
miDNAs of different species), the hot-spots of sclective pressures

- under scommon nucksar backgrounds. Such studies could he of major

significance because most models of mtDNA evolution consider
neutral processes and purifying selection as the major forces shaping
the pattern of sequence divergence among species,
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Figure L. Divergences in madel systems for the study of co-svelution. Amino acid sequence differences of miDNA-encoded peptides in modet systems for analyses of
cytondclear co-evolution in which disruption of respiratory chain function has been observed, Human cells with mtDNA from chimpanzee and gariila had impaired
oxygen consumption {i.e. decreased, on average, by 20%, 34%, and 27%, respectively, compared with the human cells and/or human rmiDNA control} that was
attributable to a marked deficiency in respiratory chain complex ! [84,85]. Activities of complexes |, 11, and IV In the Rattus xenocybrid were 44%, 37%, and 78% of control
mean, respectively, whereas the activity of cormplex lil was 2% of cantrol cybrid in the Otomys xenacybrid [86,87]. COX activities were decreased as mitochondria from a
population were moved to a purer and purer nuclear background from a distant poputation [88.88].*, Data not avaiiable.

There are ai least two potential explanations for the
breakdown of DUI in Mytilus spp. According to one view,
failure of DUI is associated with hybridizaticn events be-
tween pairs of Mytilus species [18,19,52], leading to the
disruption of nuclear-cytoplasmic interactions and DUI
instability [18]. A second explanation for the existence of
this masculinization phenomenon came with the discovery
of intermolecular mitochondrial recombination within the
cox3 gene in male gonadal tissues from Mytilus gallopro-
vincialis {53]. It should be noted that both hypotheses are
not mutually exclusive; recombination might occur more
frequently {or perhaps is more easily detected) in hybrid
situations. These findings are highly significant because
they provided direct evidenee of recombination in animal
mtDNA, a much debated subject {(reviewed in Ref [54]).
Mitochondrial recombination was later confirmed in other
mytilid and venerid species [20,48 55-57]. The observation
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that some PCR-amplified main control regions in male
gonads of M. trossulus were a mosaic of F- and M-like
sequences provided a potential link between the homologous
recombination of F' and M genomes and masculinization
[55]. Specifically, because these recormbinant variants were
transmitted through sperm like the M genome, but showed
high coding sequence similarity to the M. edulis F genome,
Burzynski et al. [55] speculated that occasional invasions of
the male transmission route by the F genome could be
possible through the addition of M control region sequences
to the control region of ¥ genomes. The first complete
sequence of a recently-masculinized M. rossulus mitochon-
drial genome also indicated that two control regions exist,
one male-specific and the other female-specific [48]. At
present, it is not known whether both potential control
regions are functional, whether they act in a tissue-
specific manner, or what their respective roles are in
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mitotype transmission. Nevertheless, recent evidence of
mitochondrial recombination within the control region in
male and female M. trossulus mussels corroborates the
hypothesis that an M-type control region sequence is necess-
ary to confer the paternal role on genomes that are otherwise
F-like [57].

Interestingly, there is no evidence of mitochondrial
recombination or masculinization events during the evol-
utionary history of freshwater mussels {(Unionoida)
[19.21}. The absence of recombination could explain
why gender-switching events are lacking in unionoidean
bivalves [47]. The lack of masculinization in freshwater
mussels also coincides with the presence of a unique M

genome-specific 3’ extension of the mtDNA-encoded cyto-

chrome ¢ oxidase subunit II gene (Meox2) [17,18,58]. This
extension, which is ~185 codons in length, is present in all
unionoidean M genome cox2 genes examined to date,
including each of the three unionoidean bivalve families
{i.e. Hyriidae, Margaritiferidae and Unionidae) {17,18].
Examination of the rates and patterns of substitution
suggests that the extension (MecoxZe) is evolving under
relaxed purging selection relative to the upstream Mcox2
homologous region (Mcox2h}, thatis, the region present in
both Feox2 and Meox2 [17,18]. The Mcox2e is likely to be
the most rapidly evolving mitochondrial domain identified
in animals [18]. Apparently, McoxZe is neither present in
mytileid M genomes, nor in other animal mitochondrial
genomes [47,48].

A specific function for McoxZe has not yet been
demonstrated. The coxZ gene encodes a highly conserved
subunit of cytochrome ¢ oxidase, the terminal enzyme of
the mitochondrial inner membrane that is responsibie for
the transfer of electrons from cytochrome ¢ to oxygen [59].
MCOX2Ze antibody-based analyses indicated that the
extended MCOX2 protein in Venustaconcha ellipsiformis
{Unionoidea: Unienidae) is predominantly expressed in
testes, weakly expressed in other male tissues, and not
expressed in female tissues {58], The immunchistochem-
istry-based loecalization of MCOX2 o sperm mitochondria
combined with the predicted presence of five transmem-
brane helices in the V. ellipsiformis MCOXZ2e region
suggest that the latter is located in the outer and/or inner
mitochondrial membrane [58]. These characteristics sug-
gest several potential functions for the MCOX2e; for
example, within the sperm mitochondria and in develop-
mental interactions. During spermatogenesis, McoxZ2e
expression could be involved in apoptosis, which is an
important physiological mechanism that regulates the
number of sperm produced (e.g. [60}1). One likely possibility
for a developmental interaction functionality for MCOX2e
is that an outer mitochondrial membrane localization
could facilitate gender-specific movements of sperm-
derived mifochondria within unionoidean embryos in a
manner similar to that observed in Myiilus [36,371.
Although more studies are needed to elucidate the func-
tion{s) of the MCOX2e protein, its association with the
ahsence of masculinization in unionecidean bivalves
suggests that it has been selected either as a protective
mechanism against gender-switching or for advantageous
male reproductive function (which could also explain the
lack of gender-switching).
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Origin and evolution of DUI

Even if the occurrence of DUI in other taxa remains to
be explored, the question persists why DUI evolved in
bivalve mollusks [7,61}. Can the considerable variation
of bivalve reproductive strategies provide a clue [62]7
Although individuals of many bivalve species demonstrate
stable gonochoric sexuality (i.e. once they become male or
female, they remain that sex throughout their life}, several
species have simultaneous hermaphrodites that preduce
hoth male and female gametes in the ovotestis or sequen-
tial hermaphrodites that change sex as they age. In all
cases, sex (or type of gamete produced) is not determined

until germ cells are differentiated but the exact mechan-

ism(s) of sexualization of the undifferentiated gonad are

unknown [63]. Moreover, neither sex chromosomes nor
sex-related genes have been identified, except for the
detection of an esterase {(Est}-like ‘male-associated poly-
peptide’ in the male gonad (or male reproductive tissue),
and a fibronectin (Fn)-like polypeptide in the female gonad
{or female reproductive tissue) of the gonschoric DUI-
species Mytilus galloprovincialis and the hermaphroditic
Pecten maximus [62,64].

A recent hypothesis suggests that DU first emerged in a
simultaneously hermaphroditic species in which both eggs
and sperm were produced in an ovotestis [61]. This idea is
based on the assumption that in species with (i} distinct sex
chromosomes, (i} maternal transmission of mtDNA, and
(it1) heterogametic males, maternally sex-linked genes and
maternally inherited mitochondria should be co-adapted
(i.e. mitochondria are more frequently co-transmitted with
maternally expressed X-linked genes than with autosemal
genes, whereas they are never co-transmitted with pater-
nally expressed Y-linked genes) [8]. In this context, it is not
in the interest of maternally expressed sex-linked genes to
‘allow’ paternal inheritance to persist [61]. By contrast, no
such conflict exists in hermaphrodite species, which do not
have sex chromosomes and in which both male and female
gametes are produced in the ovotestis. Perhaps paternally
inherited mitochondria were retained for some time in a
hermaphroditic ancestral species; however, to persist over
the longer term, paternal M genomes would have been
selected to secure more reliable transmission. This could
have been achieved by the masculinization of the ovotestis
(i.e. suppression of its ovarian aspects), so that paternal
jransmission of the M genome and a dioecious sex-determi-
nation system would become associated (see above) [61],
However, further studies on bivalve species with and with-
out DUI, as well as on hermaphroditic and dioecious species
will be essential to better understand the coupling of gender
and mtDNA inheritance in the DUI system,

Potential adaptive evolution of M mtDNA

Currently, it is unclear whether a selective advantage
favoured the retention of DUI in bivalves, but one possible
mechanism could be related to the sex-antagonistic effects
of mtDNA resulting from maternal inheritance [7-9]. In
SMI, natural selection on mtDNA operates only in females
because males do not transmit their eytoplasmic genes
24,25]. Consequently, mtDNA genotypes that have
positive (or neutral, or even slightly deleterious) fitness
effects in females but potentially deleterious effects in
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males can theoretically be maintained in a population
[8,65,66]. For example, it has been shown that the human
mtDNA variant T, which is observed at a frequency of 20%
n some European populations, yvields significantly less
motile sperm than the most commen and best performing
human mtDNAvariant H [67]. Recent experimental studies
of mice provide even more compelling evidence that mito-
chondrial mutations with comparatively small effects on
female functicn can have profound impacts on spermatogen-
esis [68] and the incidence of major sperm abnormalities
[69]. These findings provide strong support for the hypoth-
esis that adaptive evolution of male function might be
-significantly constrained begause of the maternal inheri-
tance of mitochondria [65]. Doubly uniparental inheritance
of mitochondria would thus be both an elegant strategy to
avoid sex-specific constraints associated with maternal
miDNA transmission and an opportunity for mitochondria
to evolve adaptively for male function [25,70,71].

An interesting approach to address the issue of adaptive
evolution of M genome in males employs comparison of
functional properties of mitochondria between ‘standard’
and ‘recently-masculinized’ mytilid mussel spermatozoa.
Because these different male mtDNAs exhibit almost 9%
amino acid sequence divergence, and that many of these
amino acid substitutions are not conservative, it washypoth-
esized that these differences could affect mitochondrial func-
tions, and thus sperm motility [72). The initial test of this
hypothesis indicated no significant differences in sperm
swimming speeds befween standard male and recently
masculinized mitotypes in Mytilus edulis [72]. Swimming
speed is, however, only one of the key parameters of sperm
motility and fitness, and we can not exclude the possibility of
more subtle effeets on mitochondrizal respiratory chain
function or on other gamete characteristics (e.g. longevity,
numbers of sperm). Additional comparative analyses of
masculinized and standard M-type bearing-sperm are
needed to clarify the potential impact associated with the
amino acid substitutions observed between these mtDNAs.

Concluding remarks

Since its discovery in the early 1990s, much progress has
been made in understanding the DUI system in bivalve
species, in particular with regard to the mechanisms
underlying the sex-specific behaviour of sperm mitochon-
dria and the molecular evolution of M and F mitochondrial
genomes. Future work will focus on unique features of the
DUI system such as the poteniial adaptive evolution of the
M genome on sperm motility, the role of recombination in
masculinization events (and specifically the role of the
control region in determining whether a particular mito-
chondrial genome will behave as an F or an M genome),
functional aspects of the exclusive Meox2 extension, and
finally, the possible association between mtDNA inheri-
tance and sex determination. As these examples illustrate,
DUI provides an excellent opportunity to investigate evol-
utionary and functional consequences of alternative modes
of mitochondrial inheritance.
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